SCR on Filter Based Aftertreatment for High Efficiency Engine Systems

BUILT FOR IT.

A UK based Energy Technologies Institute Funded Project

*R.G. Silver, **T.E. Paulson – Caterpillar Inc

*J.C. Martin – Johnson Matthey Catalyst

(*Co-authors) (**Presenter)

JM⊠ Johnson Matthey

Outline

➤ Introduction

• Global, collaborative project

➤ Results for NRTC and WHTC legislative cycles

- System design impact
- Summary of GHG Emissions

Results for in-use vocational cycles

- Work Based Windows Analysis
- \succ Conclusion

Introduction

What is the ETI?

- Public-private partnership between global energy and engineering companies and the UK Government.
- Develop, demonstrate and de-risk new technologies for affordable and secure energy, and lower GHG emissions
- Global consortium between Caterpillar, Johnson Matthey, and Loughborough University to develop aftertreatment for next gen HDD engines

ETI programme associate

HITACHI Inspire the Next

Johnson Matthey

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION

ETI Heavy Duty Vehicle (HDV) Programme Overview

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION

CATERPILLAR®

Goal: Meet Both On Road and Off Highway Regulations

Regulations On-Road:

Store	Test Cycle	CO	THC	NO _x	PM	PN	NH ₃
Slaye			g/k	Wh		#/kWh	ppm
Euro V	ETC	4	0.55*	2	0.03	-	-
Euro VI	WHSC	1.5	0.13	0.4	0.01	8.0 x 10 ¹¹	10
Euro VI	WHTC	4.0	0.16	0.46	0.01	6.0 x 10 ¹¹	10

*NMHC

Regulations Off-Highway Engines 130 – 560 kWh:

Store	СО	NO _x	HC	PM	PN
Stage		#/KWh			
EU Stage IV	3.5	0.4	0.19	0.025	none
EU Stage V	3.5	0.4	0.19	0.015	1 x 10 ¹²

Baseline Engine and Modifications

Baseline engine = 7 liter Cat® EU Stage IV compliant non-road engine.

- Engine modifications made to improve BSFC:
- Remove EGR
- Adjust combustion timing
- Optimizing the air system
- 9 g/kWh Engine out NOx calibration
- 2 operating modes evaluated:
 - Conventional
 - Downsped

Engine Calibration	Average NRTC Turbine Out Temperature (°C)	Typical Engine out NOx levels (g/kWh)	
Tier 4 Final Baseline	304.7	~ 3.5	
ETI Conventional	289.8	9.3	
ETI Downsped	300.4	8.5	
TECHNOLOGY		CATE	RPIIIA

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION

Translating NRTC Test Points to Downsped Operating Mode

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION Speed vs. Torque data points from every second of NRTC cycle with an engine running conventional mode are translated into a power vs. time curve.

The power vs. time data points are then converted back to speed vs. torque data points for the engine in Downsped Mode

Aftertreatment System Installation

- Modified Cat[®] C7.1 engine installed in JM HDD Test Cell
- Aftertreatment initially installed in a "straight" line from DOC to tailpipe
- Insulated pipe used between turbo out and DOC to reduce heat losses of catalyst system
- All catalysts provided by Johnson Matthey (JM)
- Aged catalysts (650°C/100h)

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION

JM

NRTC Results on Linear System Layout

	Linear System Engine Test results (Weighted)					
Engine Mode	Turbo Outlet Average Cycle T (°C)	NOx Conv. (%)	Tailpipe (TP) NOx (g/kWh)	Tailpipe (TP) N ₂ O (g/kWh)		
Conventional	290	96.7	0.29	0.26		
Downsped	300	98.3	0.15	0.36		

Compact System Layout with Urea Hydrolysis Catalyst (UHC)

Linear (red) vs. compact design (blue) NRTC Temperature Profile

NRTC Results for Conventional Mode Using Compact Design

At low temperatures the urea hydrolysis catalyst improves the NOx reduction.

*Model Predictive Controls used in compact design to maximize use of available NH₃, and minimize slip.

	Conventional mode NOx [g/kWh]				Max.TP	PN	N₂O
Layout	Cold	Warm	Weighted	% NOx	(ppm)*	#/kWh	(g/kWh)
Linear	0.94	0.22	0.29	96.8	4.3	9.0e9	0.26
Compact Design	0.60	0.05	0.11	98.8	3.3	2.2e9	0.32

Regulation: NOx< 0.4, $NH_3 < 10$, PN < 1e12

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION

NRTC Results for Downsped Mode Using Compact Design

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION Regulation: N0x< 0.4, NH₃ < 10, PN < 1e12

Compact Design Conventional (blue) vs. Downsped (green) Operating Mode Warm NRTC Temperature and Cumulative

GHG Emissions over NRTC Using Downsped Mode

- $\checkmark\,$ About 10% of total GHG was N₂O made by the SCR system
- $\checkmark\,$ Increased NOx conversion over ETI engine did not increase $\rm N_2O$
- ✓ 20% Lower GHG obtained using new SCR system on downsped engine

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION

CATERPILLAB®

Additional Cycles for Simulated In Use Work Analysis

✓ Remainder of presentation to focus on 3 of these applications:

Wide variety of cycles represent the range of uses of HDD engines on mobile applications.

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION

CATERPILLAR®

Comparison Between Regulatory and Vocational Cycles

WHTC Performance using Compact Design

✓ Colder exhaust of WHTC vs. NRTC, increases challenge to AT performance
✓ >97% NOx conversion

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION

CATERPILLAR®

Simulated In Use Testing Using Compact Design

- ✓ Local transit bus done in Braunschweig, Germany
- ✓ Cat[®] 725 Articulated Truck in Peterlee, UK

Procedure:

- \checkmark Run engine in test cell following simulated vocational cycle
- ✓ Follow cold start procedure of NRTC for first test of the day using vocational cycle ("Cold Cycle")
- ✓ Repeat the vocational cycle immediately after completing the cold cycle ("Warm Cycle") – no soak time
- ✓ Continue repeating vocational cycle until change in NOx tailpipe levels < 5% between two contiguous runs ("Nth Cycle")
- ✓ Replicate N^{th} cycle to fill out 8 hours of operation data
- ✓ Generate a set of "work based windows" for analysis based on this combined data set

Performance Evaluation Using Simulated In Use Testing

Bus Cycle Cumulative TP NOx Improves With Repetition; Conventional (Dashed Lines) < Downsped (Solid Lines)

DEF dosing reduced < 200C

1500

1000

CYCLE TIME (S)

2000

SCRF INLET TEMPERATURE

160

140

120

100

80

60

40

Ω

Cold

500

*90% of all Work Based Windows have TP NOx < this value

- Coldest (Bus) and Hottest (Articulated Truck) Cycles pass WBW type NOx requirements
- All other vocational cycles evaluated passed WBW type NOx requirement

18

Summary and Conclusions

- An SCR on Filter (SCRF[®]) based aftertreatment system was evaluated using a high efficiency engine operating in either conventional or downsped mode.
- ✓ EU Stage V and Euro VI regulations for NOx, PN, and NH₃ slip were met over each operating mode.
- ✓ In-use compliance was demonstrated using WBW type analysis over relatively hot (Articulated Truck) and cold (Bus) vocational cycles over each operating mode.
- ✓ The downsped mode reduces GHG emissions due mainly to lower BSFC while simultaneously holding N₂O formation constant over the AT system despite increased NOx conversion.
- ✓ >97% NOx conversions for most applications were similar over both operating modes, despite downsped mode exhaust being colder. Conversions over the downsped bus cycle were lower than conventional mode due to increased %cycle time spent below 200°C (50% vs. 70%), where urea dosing was limited.
- A versatile Cu SCRF[®] based aftertreatment system has been developed to provide high NOx conversion and PN reduction to meet future emission regulations on advanced engine technologies.

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION

Acknowledgements

Ben Reid – Loughborough University Andy Cawdery – Caterpillar UK (Perkins) Michael Nash – Johnson Matthey Jonas Edvardsson – Johnson Matthey

Funding: Energy Technologies Institute Chris Thorne, David Butler - ETI

Authors

Dr. Ronald Silver Caterpillar Inc Silver_ron@cat.com

Dr. Juan Carlos Martin P. Johnson Matthey juan-carlos.martin@matthey.com

Presented by

Dr. Thomas Paulson Caterpillar Inc Paulson_Tom@cat.com

INNOVATION & TECHNOLOGY DEVELOPMENT DIVISION JMX Johnson Matthey

